Categories
Article Biodistribution In-vivo Studies Mixed Therapies (BNCT + Other Therapies) Year 2013

Effect of bevacizumab treatment on p-boronophenylalanine distribution in murine tumor

Journal of Radiation Research, 2013

Authors:   Yong Liu,Minoru Suzuki,Shin Masunaga,Yi Chen,Genro Kashino,Hiroki Tanaka,Yoshinori Sakurai,Mitsunori Kirihata,Koji Ono
Journal: Journal of Radiation Research
https://doi.org/10.1093/jrr/rrs102
Abstract: Previous studies have demonstrated that angiogenesis inhibitors can enhance tumor inhibitory effects of chemo- and radiotherapy via their action on tumor vessels. Here, we studied the effect of the angiogenesis inhibitor, bevacizumab (Avastin), on boron distribution in a murine tumor model. The human head and neck squamous cell carcinoma cell line was used for inoculation into mice. Boron-10 concentrations in tissues were measured by prompt $gamma$-ray spectrometry (PGA). Hoechst 33342 perfusion and p-boronophenylalanine (BPA) distribution were determined by immunofluorescence staining. Our results revealed enhanced tumor blood perfusion and BPA accumulation in tumors after Avastin treatment, suggesting that combination of angiogenesis inhibition with treatment with boron compound administration may improve the efficacy of boron neutron capture therapy (BNCT) by modifying tumor vessels. In addition, our results also demonstrated the usefulness of immunofluorescence staining for investigating boron compound distribution at the cellular level. {textcopyright} 2012 The Author 2012. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Therapeutic Radiology and Oncology.