2014 Article ICNCT15 In-vitro Studies Radiobiology

Dose-rate effect was observed in T98G glioma cells following BNCT

Applied Radiation and Isotopes, 2014

Authors:   Yuko Kinashi,Kakuji Okumura,Yoshihisa Kubota,Erika Kitajima,Ryuichi Okayasu,Koji Ono,Sentaro Takahashi,
Journal: Applied Radiation and Isotopes
Abstract: Background It is generally said that low LET radiation produce high dose-rate effect, on the other hand, no significant dose rate effect is observed in high LET radiation. Although high LET radiations are produced in BNCT, little is known about dose-rate effect of BNCT. Materials and methods T98G cells, which were tumor cells, were irradiated by neutron mixed beam with BPA. As normal tissue derived cells, Chinese hamster ovary (CHO-K1) cells and DNA double strand breaks (DNA-DSBs) repair deficient cells, xrs5 cells were irradiated by the neutrons (not including BPA). To DNA-DSBs analysis, T98G cells were stained immunochemically with 53BP1 antibody. The number of DNA-DSBs was determined by counting 53BP1 foci. Results There was no dose-rate effect in xrs5 cells. D0 difference between 4cGy/min and 20cGy/min irradiation were 0.5 and 5.9 at the neutron and gamma-ray irradiation for CHO-K1, and 0.3 at the neutron for T98G cells. D0 difference between 20cGy/min and 80cGy/min irradiation for T98G cells were 1.2 and 0.6 at neutron irradiation plus BPA and gamma-ray. The differences between neutron irradiations at the dose rate in T98G cells were supported by not only the cell viability but also 53BP1 foci assay at 24h following irradiation to monitor DNA-DSBs. Conclusion Dose-rate effect of BNCT when T98G cells include 20ppm BPA was greater than that of gamma-ray irradiation. Moreover, Dose-rate effect of the neutron beam when CHO-K1 cells did not include BPA was less than that of gamma-ray irradiation These present results may suggest the importance of dose-rate effect for more efficient BNCT and the side effect reduction.