Authors: Rasouli F.S., Masoudi S.F., Kasesaz Y.
Journal: Annals of Nuclear Energy
https://doi.org/10.1016/j.anucene.2011.08.025
Abstract: Extensive research has recently been carried out for the development of high-energy D–T neutron generators as neutron sources for BNCT. The energy of these high-energy neutrons must be reduced by designing a Beam Shaping Assembly (BSA) to make them usable for BNCT. However, the neutron flux decreases drastically as neutrons pass through different materials of BSA. Therefore, it is very important to find ways to treat the neutrons economically. In this paper the possibility of using natural uranium as a neutron multiplier is investigated in order to increase the number of neutrons emitted from D–T neutron generator. According to the simulations and performed calculations, a sphere containing natural uranium as neutron multiplier was used to increase the number of neutrons generated by the D–T neutron generator. The energy of fast neutrons that are generated by D–T fusion reaction and amplified by neutron multiplier system is decreased using proper materials as moderators and fast neutron filters in BSA. The gamma rays which are generated as a result of neutron interaction with moderators are removed from neutron spectrum using bismuth as the gamma filter. Also, a thermal neutron absorber omits undesired low-energy neutrons which lead to a high radiation dose for the skin and soft tissues. The results show that passing neutrons through such a BSA causes the establishment of free beam parameters yet the reduction of the output beam intensity is unavoidable. The neutron spectrum related to our BSA has a proper epithermal flux and the fast and thermal neutron fluxes are compatible with the IAEA recommended values.
Categories
Design of a model for BSA to meet free beam parameters for BNCT based on multiplier system for D–T neutron source
Annals of Nuclear Energy, 2012